On Ricci solitons with a semi-symmetric metric connection
نویسندگان
چکیده
We find some properties of Ricci solitons with a semi-symmetric metric connection. When the potential vector field is torse-forming, we obtain characterizations. Applications to submanifolds are also given.
منابع مشابه
Some vector fields on a riemannian manifold with semi-symmetric metric connection
In the first part of this paper, some theorems are given for a Riemannian manifold with semi-symmetric metric connection. In the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. We obtain some properties of this manifold having the vectors mentioned above.
متن کاملOn pseudo cyclic Ricci symmetric manifolds admitting semi-symmetric metric connection
The object of the present paper is to investigate the applications of pseudo cyclic Ricci symmetric manifolds admitting a semi-symmetric metric connection to the general relativity and cosmology.
متن کاملsome vector fields on a riemannian manifold with semi-symmetric metric connection
in the first part of this paper, some theorems are given for a riemannian manifold with semi-symmetric metric connection. in the second part of it, some special vector fields, for example, torse-forming vector fields, recurrent vector fields and concurrent vector fields are examined in this manifold. we obtain some properties of this manifold having the vectors mentioned above.
متن کاملOn rotationally symmetric Kähler-Ricci solitons
In this note, using Calabi’s method, we construct rotationally symmetric KählerRicci solitons on the total space of direct sum of fixed hermitian line bundle and its projective compactification, where the curvature of hermitian line bundle is Kähler-Einstein. These examples generalize the construction of Koiso, Cao and Feldman-Ilmanen-Knopf. 1 A little motivation In [1], the authors constructed...
متن کاملAscreen Lightlike Hypersurfaces of a Semi-riemannian Space Form with a Semi-symmetric Non-metric Connection
We study lightlike hypersurfaces of a semi-Riemannian space form M̃(c) admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of M̃(c), which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2021
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2111635o